CIHM
 Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Car tes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Cois: : red plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Reliè avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas èté filmées.

Additional comments:/
Pagination is a: follows: p. 363-401, [8].
Coınmentaires supplèmentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library,
Geological Survey of Canada
The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filining contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last p_{2} ze with a printed or illustratea impression, or the back cover when appropriate. All other originai copies are filmed beginning on the first page with a printed or illustrated imprassion, and ending on the last page with a printed or illustrated impression.

The last recorded frame on esch microfiche shall contain the symbol \rightarrow Imeaning "CONTiNUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as inany frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grẑce à la générosité de:

Bibliothèque,
Commission Géologique du Canada
Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commeriçant par le prerrier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont tilmés en commençant par la premiere page qui comporte une emprainte d'impression ou d'illustration et en terminant par la derniére page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "F!N".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART Ne. 2)

Tuse ro earth's c_{1} was reco accurate in more 1 been fold from one the mann

XI. An Expermental Investigation: into the Flow of Marble.

By Frank Dawson Abams, M.S'., Ph.D., F.r'S.', Loyem Professor of Geology in Megrill Unieersity, und Jums Thomas Nhomsis, D.Se:, IL.Inst.C.E., Head of the Engineering Depurtment, Manchester Municipal Technical School (formerly Professor of Mechrnicul Engineering in MeGaill University).

Commanicated ly IProfessor Callawnar. F.R.s.

Received June 12,-Read June 21, 1900.
$\left[\begin{array}{ll}\text { PL.LTES } & 3.2-25 .\end{array}\right]$
(ONTENT,
Page1. Introduction363
1I. Conditions to be reprodueed in Experimental Wook 369
III. Deformation of Carrana Matrble :370
A. Methorle employed :30

1. Deformation of the Dry Liock at Ordinay Temperatures 373
C. Deformation of the Dry Rock at 300 C. and at 400° C. 376
D. Deformation of the Rock at $300^{\circ} \mathrm{C}$. in the presence of Water :38.
[15. Comparison of the Stmetures produced in Carrara Marble by Artificial Deforma- tion with those produced hy Deformation in the case of Metals 386
V. Comparison of the Struetures produced in Carrara Mathble by Artifial Deforma- tion with those observel in the Limestones and Nathes of highly contorted portions of the Earth's Cirust 387
VI. Summary of Results 398

1. Introdiction.

Trus rocks under the conditions to which they are subjected in many parts of the earth's crust become bent and twisted in the most complicated manner is a fact which was recognised by the earliest geologists, and it needs but a glance at any of the accurate sections of contorted regions of the earth's crust which have been prepared in more recent years to show not only that in many cases even the bardest rocks have been folded, but that there has often been a marked transfer or "flow" of material from one place to another in the folds. While, however, these facts are undisputed, the manner in which this contortion, with its concomitant flowing, has taken place is a

[^0]3 A 2
5.1.1901
matter concerning which there has been much discussion and a wide divergence of opinion. Some authorities-among whom Hary,* whose work in Alpine geology must command the admintion of all, may be mentioned-have held that while, in the "pper portions of the earth's crust, rocks, when submitted to pressure, will break, giving rise to faults and owerthrusts, the same rocks in the deeper portions of the earth's crnst are mable to break up in this way, owing to the great weight of the superincumbent strata. The lines of fiacture become smaller and greatly increase in number, the various minerals constituting the rock thus breaking down into grains, which, however, move around and past one another; the arljacent grains always remaining within the sphere of cohesion. The structure becones cataclastic ; the rook mass, acting as plastic boclies do, and flowing in the direction of least resistance, maintains its coherence while altering its shape. Hems believes that there is at finther stage in the process which he thus describes:-
"Wird die umformende Kraft endlich so gross dass sie anstatt an ein, paar tausend Stollen die Festigkeit dureh Bruch aufheben zu können, dieselbe in jedem einzelnen Punkte überwindet, so wird das Spaltennetz unendich fein und das Gesteinskorn zur Kleinheit eines Moleküles reducirt, d h. die mechanische Bewegungseinheit ist nicht mehr ein Gesteinsbrocken sondern unendlich klein so dass die Bewegung eine continuirliche Umformung ohne Bruch widd."
Now, according to Spming, the property known is regelation is really due to a power which fiagments of borlies have of uniting if brought within the range of the molecular forces, a property which, although possessed in a marked manner by ice, is also, as he has experimentally demonstrated, exhibited by many other bodies, and would probably be displayed by all if the required conditions could be attained. The "flow of rocks" would therefore, according to this view, be a manifestation of regelation on an enormous scale.

Other writers on this subject have maintained that rocks are absolutely destitute of plasticity in any proper sense of the term. Thus Mallet+ based his theory on the supposition that in the earth's crust rocks under pressure are shattered. Pfaffs has held that in the depths of the earth great pressure alone wili tend rather to prevent molecular movement and thus keep the rocks rigid. Those holding such views attribute the deformation of rocks either to crushing with subsequent recementation of the tragments by mineral matter deposited fiom percolating waters as the movements proceed or after they are completed. $\|$ or to a continuous process of

* 'Der Mechanismans der Gehirgsbildung,' p. 31 ; see also Van H1se, C. R., " Metamor'phism of Rocks and Rock Flowage," 'Bull. Geol. Soe. of America,' vol. 9, 1898.
\dagger "Recherches sur la propriété que possèdent les eorps de se souder sons l'action de la pression." ' Revue Universelle des Mines,' 1880
\ddagger 'Philosophical Transactions,' vol. 163, 1874.
\& 'Der Mechanismus der Gebirgsbildung,' pp. 19-21.
|| Stapfr, "Zur Mechanik der Schichtenfaltungen," 'Neues Jahrbuch für Mineralogie,' 1879, p. 5:92;
soluti water greats nowet whole contor refort wery liv M. their their emphat at the in mos of the been p hower some t in chuc deform: obtain as to tl

Frou taken a by fold Forchi

* 'Rep

Arsemal,
same seri
$\dagger \cdot$ Unt
\ddagger " Km

- Der Clia
§ "On

1815.

$|\mid$ 'Stur

- 'Urs
** " E
$\dagger \dagger$ " T
$\ddagger \ddagger " V$
1×68.
ss "Üb
I) issertatio

IIIII 'Thit
le divergence of Alpine geology mat while, in the ure, will break. portions of tha t weight of thu atly increase in own into grains, grains always lastic ; the rock east resistanct, hat there is a
n, paar tansend edem cinzelnen esteinskorn zur nheit ist nichit lewegnig eine eally flue to a range of the mer by ice, is ar bodies, and ttained. The mifestation of
y destitute of heory on the
Pfaff has re to prevent ; such views ecementation aters as the s process of
phism of Rocks
le la pression."
'1879, p. 792;
sedution and redepmsition of the mincmals which make mp the mek. The perenating waters, it is held. tranl to dissolve material at those prints where the pressure is

 Whole boek. Moistme womld thas be a necessary fitetor in all mok fibling on contortion, and reverstallisation tha essential fiature of the phammenon. Thes thefomation af " larly of dry mek womle be impossifle. The opinion that water is a very important, if mot an absolutely essential, titcor in the folding of recks was held
 their opinions on the fact that racks are alten much softer while they still contain their quary water than attur they ate thomoghly dry, a lact which has been
 at the ansemal at Wiaturemon, Mass, It is a matter of great difticulty, ind, in fact, in most cases it is fuite impossible to decide with certainty upen the relative merits of these emoticting viows fiom a stuly of the defemmed recks themselves. Hat this Inen possilite, the controwers womblomge since have been bronght to a clase. Heam, however, in his great work on the 'Machanimm of Monntain Making't published some twenty yens since, refors to the very valuable results which might be looked fir in elncidation of these questions from carcfully comblacted exproments upon the deformation of recks unfer conelitions as nearly as possible appoximating those which obtain in the deeper prots of our math's crust. He expersses grave doubts, however, as to the pmssibility of reporncing the comblitions in question. ${ }_{+}^{+}$

From the time af Nir James Hasse expermental investigntions have been undertaken at intervals, aming more particularly at the reproduction of the foms exhibited
 Forcheimers,s and Buhey Widisi|l| may be especially mentioned. lathese experi-

[^1] less resistant than the rorks themselves - weme comployed, sor that while they hater

 defomation praluced in at similar chatacter, measumed the abomat of promanent

 the tests made at thir Watentang slates ow sandstomes to amy motieable extent. In thang promanent "sot" was and Arsemal, the employing gratar prosure, a slight

 accelemated if tha material he kept monst.
 worthy of mention, bear more directly upon the question at issme. These have been designed with the object of reprolucinge, at least in sume of their fatames, the comeditions existing at great depths in the earth's crust, and in this ware bringing about such rock deformation as there results. Gomase subjected little cylinders of
 area of 1 centim. in cross sectiom, and a height of between half a centime and 1 centim, to pressures varying fiom 22,000 to 25,000 atmospheres in a poweffal testimg machine. The eylinders of onthechase and quato erushed to an incoherent powder. The cylinder of calcite, on the other hamd, retained its colterance. It herame perfectly opacue, and while still retaming its cleavage, is stated to have hand a eonehomidal

[^2]\therefore chay, ise.-mmen while they have "left the naperets. " prese (Ins. of ther meks at, ther comditions onikhtosos," fing thick. poperly they muderge " ar ane sulijected Has.a. + in morn it of promament mind that in more were combedded hant, lonever. ble cextent. In "ssinte: a slight lstome midel the *me. Reswass wilhn to slowily ction is greatly

a me exrecially

 asc have heen mes, the comdiminging about e cylinders of mel having man centin. and 1 wrotiul testing eront punder. beceme peria comelooidal - usitial lustre, ociation for the ruvember, 1869;
 collar, lmi in such cases the malcite oceulying the depressmimes and cracks, as well as the portinns of the cyliuder aljacent of them, whs redued to a binely pulverulent condition, and did ant shan the cheavage peasessed hy uther pentions of the mase.

 the several minemats in curstion, cacept possibly in the cala of the matmaster, and
 foldinge of the wer erystalline meks hat tuken phee bedine they had become
 the mieroscope that it lms been ernshet, its colnempee is due to a retementution on'
 Rowimbsen, hamever, in reviewing Cicmablis work, that while in the case of the quartz mud urthoclase the mineraly had undembently heen crunsed wo powder: in the experiment with the calcite colmm it was he ne means prowed that definmation without raptme, or "flow," wonld not "quilly wedl aceomit tore the phenomenn observed. Cufortmately, no cexmination of the mieroseonical characters and optieal properties of the several minerals, betore and after they bad been summitted to pressure, was mate.
 enclosed a small colmm of lithographic limestone from solenhofen in a sted whek, except at the top, where a piston of the same metal came down upon it. A sery small hole was drilled through the side of the block to the limestone, and this was filled with wax. The marble was then sulmitted to a pressme amomuting to 9900 atmospheres, which was continued for reven week. The was was mot displaced, and the limestone suifered nu ilteration. In another experiment, a suecimen of the sime limestone, having a pelished surface, was sulmitted to a pessure of 21,800 atmospheres, delivered by means if a small ring-shanped steel die. The limestone did not flow into the centre of the ring, and only a slight depression was left on the polished surface of the rock. From these experiments Prafr drew the eonclusion that pressure alone is incapable of inducing any plasticity in limestone.

Kick, in his experiments on deformation, mate use of many different materials the only rock investigated being marble. One of his experiments reproduces very closely the conditions in the first of Pfaff's experiments just described; but the result obtained was mitrely different. A stout custing was hored out to receive a piston, the hole being closed at the lower end. In the hottom of the hole a steel die,

[^3]
 The piston was then inserted, mad lig it pressure was hronght to bear mun the mable, which pressure was gradually: ineromsed t1 13,000 netmospheres. Thee wit, which could escape only throngh the very murow spael between the piston muld the
 the marlle to which it han access, while the raisend purtions of the dipparatus and

 sulphar, proured in while molent the mathe and the sides of the box with ahme ur
 press. After compression the ahm on sulphur wher height her means of a powerfind at right nugles th the pressine,* In anderem considerably flattened in a direction ertinder in an irom thue, und havine filled the interperiment he enclosed a martle whole transverscly by the apllication of " high interening space with water, bent the "hen, the marble was fimm to have acted ". likesere When the tube was sawn
 it must be mentionerl that the marble, ass will hen weith these experiments, however, its original character in wll mapnets, ahthomgh it seth hiter, could not have preserved in refering to the expriment sins that the maphened its conerence, and Revera
 experiment in how fin the defimmation whate defirmed apheres of the first-mention of these defemed spheres were presented and is tracemble of plastic flow. Three of Zintich, and are presered in the Geolongel Profeston Kick th the University of ench about 2 centims. in dianctere cergical Musemm of the Linisersity: Two of them, beprohnced by phastice thow: but the thent show a derided flateming, such as might flatemed that the lemgtl of the smallest whing is comsiderably larger, and is so greatest, shows in ite surfice a serines of tivermeter is about two-thirds that of the
 phace the interior is seen to mesent a shed shearing, ithe where cracked across in mat successive coats of an onion. Daubréest also oltained

[^4]- "ppards. On this "pall wachut spmeens. it to hear upan the mospheres. Thw: wil, the pistem and the I' the ypmatus murd 'the dio ranning in It was finmal that re upon the dier was in a stenit cipperer hox with mhan un unn: the lowe and Hemsis of a powerfinl r, sutting fiese the red in " direction aclosed a mandtle h water, brat the 'e tube was sawn " without having iments, however, have preserved ence, and Reyma and " bur miessigy - first-mention.d : Ilow: 'Three of (1) University of \therefore Two of them, h, such as might uger, anl is so "ls that if the , as if' the rock across in me Ippearance the
liis sultijeet, in
eil. dus Vereines
tull. de lai Soccieté

 2 centims, were cut in two vertically, the two halves tighty lamul tugether ugum hy manns of wire, and inserted firmly in a tuthe semmected with a chambur in which

 the explasive fires the marble cylimens mpmently hermme somewhat phastic, the wire binding them aftem lemving slight depessims on the surfice when remmend.

 perfination.

Ther several experimental investigntions hitherto mathe on the lhw of' weks (num it is beliened that the summary given alme ent liness all the experimental work in which
 pressint time), while very interesting and instructive, are ineondusive and in certain cases apmently mutnally contradictory. Neither has accomut hern tuken in any of these investigations of the rapidity with which the pressure was implied, of the temperature of the mok during compression, mer, except in a very fow conses, of the duration of the pressure, Nor have we in any case an accurate description of the elamacter of the rock hefine and after the experment, of of the strength of the defomad roek, so that the actual mature of the effect proluced ly the pressure cata
be determined.

11. Condmoss to be remodoced in Expmmental Wom.

It is generally agreed that three chicf fietors contrilote to bringing about the combitions to which rocks are subjected in the deeper purts of the earthis crust, where folding with concomitant flowing is most marked. These are:-

1. Great pressure.
2. High temperature.
3. Percolating waters.

With regned to the first factor it must be motel, that mere cubic compression will not produce movements of the nature of flowing, although it may produce molecular rearrangement in the rock. A differentinl pressure is necessary to give movement to the mass. Heme has stated the conditions of movement, so far as pressure aflects
them, as follows:-
"Plastische Umfommung geschieht also nur, wenn allseitig ein Druck wirkt, der
 rol. ©xCr.-A.

31
jedenfalls grösser als die Festigkeit, aber auf verschiedenen Seiten nicht gleich gross but it ist, so dass Ausweichen seitlich zum Maximaldruck stattfinden kann. Ist das the req vorhandene Druckminimum kleiner als die Festigkeit, so tritt Zerbrechen und damit difficult Ausquetschen, 'Umformung mit Bruch,' ein." In rock movement resulting from iron we these several factors the additional fictor of time may play an important part. thin str Whether all these factors, or only certain of them, are actually necessary for the as it wat production of rock deformation is muknown, but can probably be determined by leaving experiment. For by experiment the action of each may be studied separately, as thick, a well as in combination with the others.
In experimental work, therefore, the first condition to be reproduced is that of beins differential pressure which, even in the direction of its mi reduced is that of a admirab elastic limit of the rock under investigation. The ts minimum value, exceeds the 0.81 inc be studied when combined with heat, and thene action of this pressure should then accurate Finally, the effect of time or rapidity of motion with heat in the presence of moisture. The tub

III. Deformation of Carrara Marble.

A. Methods employed.

In the present paper* a Sirst contribution to such a study is presented, pure Carrara marble being the rock selected. At the outset the endeavour was made to submit this rock to the first of the three conditions above mentioned only-that is, to bring to bear upon it great pressure from all sides, a pressure, however, which should not be equally great in every direction, but which, while always exceeding the elastic limit of the rock, shonld be greater in one direction than in others, thus tending not merely to bring about cubic compression hut to determine a flow of the material in one direction. For this purpose it was sought to enclose the marble in some material having a much higher elastic limit than the rock itself, and possessing at the same time a very considerable ductility, so that it would move without rupture when the pressure became sufficiently high. Under such conditions it was believed the marble could not break in the ordinary way, even when submitted to a pressure far above that which muder ordinary conditions would be required to crush it, for it would be enclosed on all sides by a stronger substance, and the pressure being increased it would remain intact until the elastic limit of the enclosing material had been exceederl, whald it would commence to move, acting as water or any other end and exceded, when

As it was proposed to exteud the investiration other enclosed fluid might. other rocks, a long series of experiments gation eventually to granites, and possibly to obtain a material which possessed was made on various alloys in the endeavour the necessary ductility to fulfil the a sufficiently high elastic limit combined with * A preliminary notice of these experiments was read before Section C of the British Association for
the Advancement of Science, at the Toronto Meeting in 1897, an abstract of which appears in the 'Pro-
ceedings' of the Association for that year. by givin arrangin The tub into it a tube to no longe able in would h the tube around t fitting st The high hydraulic photogra

A cyli shape so means of the two axial alig holes bor under pr and is ke half fille cylinder undue le: nected dii larger enc the same
en nicht gleich gross but it was found that none possessed a sufficiently high elastic limit combined with len kann. Ist das the required ductility, except certain aluminium bronzes, which however it was erbrechen und damit difficult to obtain with constant composition and properties. Heavy tubes of wrought nent resulting from iron were then made on the plan adopted in the construction of ordnance by rolling a an important part. thin strip of Low Moor iron around a bar of soft iron and welding the strip to the bar y necessary for the as it was rolled around it. The core of soft iron composing the bar was then bored ont, - be determined by leaving a tube of welded Low Moor iron, the sides being about a quarter of an inch udied separately, as thick, and so constructed that the fibres of the iron ran around the tube instead of being parallel to its length. These were found to answer the requirements value, exceeds the ressure should then esence of moisture. ted.
is presented, pure vour was made to donly-that is, to ver, which should ceeding the elastic thus tending not of the material in in some material ssing at the same :upture when the lieved the marble ressure far above t, for it would be creased it would 1 exceeded, when id might. tes, and possibly in the endeavour combined with ial in all cases;
ish Association for pears in the 'Pro-
admirably. The following procedure was then adopted: Columns of the marble, 0.81 inch, or in some cases 1 inch, in diameter and 1.53 inch in lencth, were accurately turned and polished, by Messis. Volgi and Hochaesang, of Göttingen. The tube was then very accurately fitted around the marble. This was accomplished by giving a very slight taper to both the column and the interior of the tube, and so arranging it that the marble would only pass about half way into the tube when cold. The tube was then expanded by heating, so as to allow the marhle to pass completely into it and leave about 1.25 inch of the tube free at either end. On allowing the tube to cool a perfect contact between the iron and marble was obtained, and it was no longer possible to withdraw the latter. This perfect fit was considered indispensable in order to prevent the limestone crumbling when pressure was applied, as it would have done had it not heen supported at every point. In some experiments the tube was subsequently tu' l down, so as to be somewhat thimner immediately around the marble. Into either end of the tube containing the colnmn an accurately fitting steel plug was then inserted, and by means of these the pressure was applied. The high pressure required was obtained from the city water mains by using a double hydraulic "intensifier"; the whole arrangement being shown in the accompanying photograph (Plate 22, fig. 1).

A cylinder containing a moveable piston, whose upper portion is cast of square shape so as to form a press plate, has another press plate mounted opposite to it by means of four strong steel columns. The small cylinder containing the marble with the two steel plugs is set up between the two press plates, the plugs being kept in axial alignment with each other by having their enlarged ends fitted into cylindrical holes bored in a small but massive casting (A), which acts as a guide to them when under pressure. The sliding piston in the large cylinder is 20 inches in diameter. and is kept tight by cup leather packing. The strong copper vessel (B) has its upper half filled with a heavy oil, and thence is led the only pressure comection to the cylinder (C), to which oil, but no water, is admitted, in order that corrosion and undue leakage may be averted. For moderate pressures the city mains are connected directly to the lower half of the copper vessel, but for high pressures to the larger end of the small intensifier (D), and a pipe then leads from the upper end of the same to the lower end of the copper vessel. In cither case the pressure is kept

3 в 2
steady for weeks at a time when necessary by means of a small spring relief valve (a) the stl with an adjusting screw, so that the water from the mains is allowed to overflow at was sy any desired pressure, which thus cannot be exceeded. A recording gauge (b) attached This di to cylinder (C) registers the history of the experiment throughout its course. The the prit allowance to be made for the friction of the 20 -inch diameter cup leatise. The the pre fully determined, so that a close estimate of diameter cup leather was carejected can be formed. This was done by observi pressure to which the rock is subspecimen of hard steel due to varions loads applied the amonnts of compression of a and then inferring the loads to which it was aftied by a Buckton testing machine, from the compressions to which these gave rise. Therds subjected in the actual press means of a Martens' mirrur extensometer readine to compressions were measured by any possible difference in the Yomg's modulus of the $1 / 100,000$ th of an inch; and was got rid of, after the mamer of Pauscmane compressing it, and so reducing it to a "state of by first altermately stretching and firiction was fomm to be approximately constant in ease." lin this way the cup leather pressure) within the limits of pressure employed quantity (i.e., independent of the Thus, if' p be the grage-pressure in the 20 -ined, and to amomnt to about $400 \mathrm{ll} s$ s. square inch on the rock, of area a, we shall have cylinder, and P the pressure per

$$
\left.1=\frac{311 p-400}{a} \text { (} \because \text { being in sq. inches }\right) \text {. }
$$

We may tabulate the values of P for the three sizes of rock cylinder employed, viz., 1 inch, 0.8 inch, and 0.4 inch diameter, corresponding to various values of p, from 50 lbs , to 300 lbs . per square inch in the cylinder (C). (The latter was the greatest pressure allowable in the 20 -inch cast-iron cylinder as designed.)

p.	Rock 1 inch dia.		liock 8 inch dia.		Rock 4 inch dia.	
	P., lbs. 'sq. in.	atm.	lbs./sq. in.	$a t m$.	lhs./sq. in.	atm.
50 100	19,500 39500	1330	31,300			
200	39,500 79,500	2680 5400	63,400	4320	125,300 253,500	8530
300	119,500	5400 8150	127,600 191,800	8700 12805	25,500 510,300	17,200
			191,800	13,050	767,100	34,700 52,100

It having been ascertained that columns of the Carrara marble, 1 inch in diameter and 1.585 inch high, crushed at a pressure of from 11,430 to 12,026 lbs. to the square inch when free from any lateral support, the column enclosed in its wrought-iron tube in the manner above described was placed in the machine and pressure applied gradually, the exterior diameter of the tube being accurately measured at frequent intervals. No effect was noticeable until a pressure upon the marble, varying of course with the thickness of the enclosing tube, but upon the marble, varying of
sming relief valve (a) the sfuare inch, was re:ched, when the tube was found to slowly bulge. This bulge lowed to overflow at was symmetrical and confined to that portion of the tube surrounding the marble. ig gauge (b) attached This distension was allowed to increase until the tube showed signs of rupture, when ut its course. The the pressure was removed and the experiment concluded. up leather was carelich the rock is subof compression of a on testing machine, in the actual presss s were measured by oth of an inch ; and successive loadings tely stretching and ray the cup leather independent of the to about 400 llss . ' the pressure per
ylinder employed, rious values of p, 'he latter was the ned.)
dia.
atm.
inch in diameter os. to the squaro ought-iron tube ressure applied ned at frequent ble, varying of t $18,000 \mathrm{lbs}$. to

n. Jormation of the Dry Rock at Ordinary Temperatures.

Eight experiments were made in this mamer on the dry rock at ordinary temperatures, the rate at which the pressure was applied diflering in different cases, the consequent deformation in some cases heing very slow ind in others taking place more rapidly, the time occupied liy the experiment being from 10 minutes to 64 days. The pressure was regularly increased so soon as the movenent ceased, and in this way the rate of motion was kept as nearly constant as possible. The final amomit of deformation was not in all cases equal, as some of the tubes showed signs of rupture sooner than others, thas requiring the experiment to be brought to a close.

Plate 23 , fig. 1, shows one of the tubes enclosing a mathle column before the pressure has been applied, and heside it the same column after the completion of the experiment. The deformation in this case was curied out very slowly, the time occupied by the experiment being 64 days.

After the bugging of the tube had been carried as far as possible, consistent with safety, the tube was removed from the press, the plugs taken out, and the tube was slit through longitudinally by means of a narrow cutter in a milling machine along two lines opposite one another. The marble within, however, was found to be still firm and compact and to hold the respective sides of the tube, now completely severed from one another, so firmly together that it was impossible without mechanieal aids to tear them apart. By means of a steel wedge, driven in between them, however, they could be separated, but only at the cost of splitting the marble through longitudinally. Columns so split, with the portions of the tube adhering to them, are shown in Plate 23, figs. 3 and 4, the marble column in the former case having been reduced to one-half of its original height in 4 hours, while in the latter case the deformation occupied 17 days. The marble was in one or two instances detached from the tube without breaking it further, by striking the latter it smart blow on the back with a hammer, but usually it adhered so firmly that it could be released from the tube only by spreading the latter in a vice. The exterior surface of the marble where it had been in contact with the tube was smooth and conformed to the curve of the bulging iron, its surface reproducing perfectly all the fine tool marks on the latter.
Fig. 2 of Plate 23 shows the leformed marble, freed in this way from the tube shown in fig. 1 of the same plate, and beside it a marble colmm of the dimensions which it originally possessed, for purposes of comparison.

The deformed marble is uniform and compact, and seems to lreak with equal ease
in all directions. ing a dead white colomr, somewhat like chalk, the grom the original rock in possess the de calcite being no longer visible, and the difference glistening cleavage surfaces of the produc cases owing to the fact that a certain portion of being well brought out in certainthey at unaltered and unaffected by the pressure. This, whe original marble often remains Thin cones of ohtuse angle, whose bases are the original when present, has the form of two and the the fices of the steel plugs, while the apices exterl in of the column resting against the mic marble and point toward one another. These extend into the mass of the deformed The de are developed, as is well known, in all cases where cur rather parabolas of rotation, ance, di east iron are crusherl in a testing machine in the ordinary rock, Portland cement, or cone. experiments they seldom constituted any large proportion of ther. In the present the abo some cases are absent or but faintly indicated, but there is the whole mass, and in lines, w tact with the ends of the steel plugs a thin cake at least always in immediate con- These, characters of the original rock. In order to ascertain the strength of the deformed rock as compared with the original marble, and also whether, in the case of the former, the rate of cleformation influenced the strength, three of the half columns, obtained by splitting the deformed tested in compression by means freeing them from the collar, were selected and sented in the following table, the measurements being machine. The results are pre-

	$\begin{aligned} & \text { Original } \\ & \text { height. } \end{aligned}$	Original diamleter.	${ }^{G}$ Greatest di ameter ifter deformation.	Time of, deformation,	Crushing load for deformed marble, lbs. per square inch
Experiment A ...	$\begin{aligned} & 1.594 \\ & 1.594 \\ & 1.50 .5 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.000 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 1 \cdot 407 \\ & 1.203 \\ & 1.388 \end{aligned}$	6.4 days$1 \frac{1}{2}$ hours10 minutes	
$\cdots \quad \mathrm{P} \ldots$					5350
					4000 2776

As already mentioned, columns of the marble of the original dimensions, namely, 15 inch high and 1 inch in diameter, were found to have a crushing strength of between 11,430 and $12,026 \mathrm{lbs}$. per square inch. These figures show that, making all due allowance for the difference in shape of the specimens tested, the marble, after deformation, while in some eases still possessing considerable strength, is much weaker than the original rock. They also tend to show that when the deformation is carried on slowly the resulting rock is stronger than when the deformation is rapid. The specimens of the deformed rock when tested, in all cases crushed in exactly the same manner as the columns of the original marble, mamely, with the development of two eones whose bases are the end faces of the colum, and whose appment of toward one another, with the appearance, when the limit of strength is apices point series of inward curving cracks ruming from top to bof strength is reached, of a which strips of the rock split away from the cones in oottom of the specimen along These cones while in
calcite individo moved ceased. fragmen along in therefor gneisses. structur 70 diam was incr deformat of the r are seen
Betwe another been squ grains ha or twiste when his twiuning by this individua

By this their sha movemen to again.

In the flattened
iginal rock in possess avage surfaces of th rought out in certain
marble often marble often remains , has the form of $t_{w n}$ dumn resting against lass of the deformerl arabolas of rotation, Portland cement, or
ler. In the present whole mass, and in sin immediate con-
rble possessing the
compared with the rate of deformation itting the deformed were selected and We results are pre-es:-

Crushing load for deformed marble, lhs. per square inch.

5350
4000
2776
nensions, namely, hing strength of ow that, making the marble, after ength, is much the deformation mation is rapid. in exactly the development of se apices point is reached, of a pecimen along cones while in
the deformed rock possibly influenced in their position to some extent by the cones produced in deforming the roek, do not vesult from them, since, as above mentioned, they are always observed in the case of the original marble as well.
Thin sections of the deformed column passing vertically through the unaltered cone and the deformed portion of the rock were readily made, and when examined under the microscope elearly showed the nature of the movement which had taken place. The deformed portion of the rook can be distinguished at once by its turbid appearance, differing in a marked manner trom the clear transparent mosaic of the unaltered cone. In those cases where the deformation has been rapid, as in Experiment P of the above list, an anastomosing and complicated meshwork of curved and branehing lines, which are especially turbid in appearance, are seen rumning through the roek. These, when magnified 500 diameters, are resolved into strings or bands of very small calcite granules. They mark lines along whieh shearing has taken place. The calcite individuals along these lines have broken down, and the fragments so produced have moved over and past one another and remained as a compact mass after the movement ceased. In these lines of granulated material are enclosed great numbers of irregular fragments and shreds of calcite crystals, bent and twisted, which have been carried along in the moving granulated mass as the shearing progressed. The structure is therefore cataclastic, and is identical with that seen in the felspars and many gneisses. A mierophotograph of a thin seetion of the deformed marble showing this structure is seen in Plate 25, fig. 1 . It is taken in ordinary light, and magnified 70 diameters. The original column in this case had a dianeter of 1.067 inch, which was inereased by the pressure to 1.356 inch along the line of greatest bulging. The deformation was carried out in 7 hours. The dark areas are the granulated portions of the rock in which the fragments of ealcite individuals, often distinetly twinned, are seen to be embedded.

Between these lines of granulated material the marble shows movements of another sort. Most of the ealcite individuals in these portions can be seen to have been squeezed against one another, and in many cases a distinct flattening of the grains has resulter with marked strain shadows, indicating that they have been bent or twisted. They show, moreover, a finely fibrous structure in most cases, which, when highly magnified, is seen to be due to an extremely minute polysynthectic twinning. The chalky aspeet of the deformed rock is chiefly due to the destruetion by this repeated twinning of the contimity of the cleveage surfaces of the calcite individuals, thus raking the reflecting surfaces much smaller.

By this twinning the calcite individuals are enabled under the pressure to alter their shape somewhat, while the flattening of the grains is evidently due to movements along the gliding planes of the crystals. This, however, will be referred to again.

In these parts, therefore, the rock presents a continuous mosaic of somewhat flattened grains. A microphotograph of a portion of the rook showing this structure
is seen in Plate 25, fig. 2. It was taken in ordinary light, and magnified 50 diameters. Every stage can be traced, however, from the mosaic of twimed and somewhat flattened grains to the areas of perfectly granulated material. Minnte lines of grunulated calcite first appear along directions of intense twisting in the mosalic, then
rock is wol tempe 300° these become more numerous, and finally the eomplete lreaking down of the mosaic into finely gramulated material, filled with twisted remmants of the calcite grains, can be seen. The question of time does not seem to play any inportant part in the character of the deformation. The structure of the marble deformed in 64 days is essentially the same in character as that which was deformed to the same extent in 10 minutes. In both cases the lines of catachastic structure and the intervening areas composed of flattened grains are found. It seems probable, however, from a study of the thin sections, that very rapid deformation tends to render the former structure more pronounced and more abundant, and as the granulated calcite is apparently the weakest portion of the mass, in this way to make the rock which is rapidly deformed weaker, as it is shown to be by the tests. The fact that the twiming and other structures above described are not developed in the eones proves that they are not produced by statical pressure or cubic compression, but that they are developed only when actual movement takes place in the mass.
In one experiment, of which a photograph is given in Plate 23 , fig. 6, under the pressure of the two pistons, the marble was deformed as above described, causing the enclosing tube to bulge in a marked manner, and the pressure being continued, the enclosed marble tore the wrought-iron tube apart, developing a ragged rent aeross the fibres of the iron in a vertical direction, and commenced to fall out of the rent in the form of a fine white powder. On removing the pressure and milling open the tube, the remaining marble was found to be still firm and compact, except in the vicinity of the rent, where it was pulverulent.

c. Deformation of the Dry Rock at $300^{\circ} \mathrm{C}$. anel at $400^{\circ} \mathrm{C}$.

It was next sought to determine experimentally in what respect the second factor', namely, heat, would influence the result. A column of the same Carrara marble and of the same dimensions as those used in the former experiments was enclosed in a wrought-iron tube of the same construction as before. This, which is marked (A) in the accompanying figure (fig. 1), is surrounded by a cast-iron jacket (B), which is bored to receive it. The casting is so arranged that hot gases circulate in an amular channel (D) within it and outside of the wrought-iron cylinder (A), so that the marble is kept at a high temperatme while the pressure is applied. The casting is as massive as possible so as to equalise the temperature of the interior and enable that of the enclosed rock to be inferred by a Callendar's platinum resistance themometer (C), which is inserted at the side of the shell in the air space (E). The hot gases are excluded from this space by the wall (F); and the heat flows into the cylinder and
variation for $1: 24 \mathrm{~d}$ and at as are given

Vol. CX
ified 50 diameters. ed and somewhat Minute lines of a the mosaic, then wn of the mosaic calcite grains, can rtant part in the mimed in 64 days led to the sume itructure and the ms probable, how11 tends to render is the gramulated o make the rook s. The fact that loped in the cones oression, but that rass.
fig. 6 , under the ibed, causing the ng continued, the ed rent across the of the rent in the g open the tube, in the vicinity of

${ }^{\circ} \mathrm{C}$.

he second factor, nara marble and was enclosed in a is marked (A) in ket (B), which is ate in an amnular (A), so that the The casting is as and enable that cee thermometer he hot gases are the cylineler and

ON AN EXPERIMENTAL INVESTHATION INGO THE FloW OF MARBLE. 377 rock rather by the ends that across the bardly-comucting air space (E). 'The whole is well lagged with assbestos. The leat is supplied ly means of a Bunsen flame. The temperature, which was ohserved thrice daily, was maintained as nearly as possible at $300^{\circ} \mathrm{C}$, , ind wass within a few degrees of this most of the time, the extreme limits of

Fig. 1.
varution being $270^{\circ} \mathrm{C}$, and $352^{\circ} \mathrm{C}$. The marble was maintained at this temperature for 124 days, on four months, and was during this time deformed as slowly as possible and at as nearly as possible a constant rate. The dimensions oir the column in inches are given in the following table:-

[^5]Experiment K.

Height before deformation.	Height after deformation.	Diameter Tefore defor mation.	1) ianetar after deformation.	Time of ileformation.	Crushing loul after aleformation in lhs. per sip. inch.
153	1:355	1.002	$1 \cdot 110$	12.4 diay	10,652

The column was thus shortened by 175 inch, or $11 \cdot 4$ per cent.
On removing the pistons and slitting the tube open the marble within was fond to he so havd and compact that it was necessary to insert a steel wedge between the two halves of tuhe and drive it in by means of a hammer in order to split the marble so that the adhering portions of the tube might be removed. The rock broke with a clear, even fincture along a vertical plane passing throngh the centre.

Cones were not visible in this mable, the whole colmm (although mot in so marked " manner as in the former expriments) presenting the dead white apraname chanacteristic of the deformed mathle, although the ends of the colum in contact with the phugs were a trifle less chalky in aspect than the rest of the rock. This difference was, however, by momeans well marked, and little glistening cleavage faces conld be seen throughout the whole mass of rock. One of the lalf-columns obtained ly splitting the deformed mathle was freed from the tube which still adhered firmly. to it, in the usual manner. It separated as a single solid mass, which was quite smooth on the surface but staned with spots of a deep-brown colcur where it had been in contact with the hot irom. The polish had, however, disippleared owing to the movements which had taken place over the surface, except on the ends and along a narrow zone at either end of the colmm where the lustre was still retained. The half-colmm was, of course, distinctly bulged. A photograph of bulged colomm, together with one of original size, is seen in Plate 23, fig. 5 .

In order to determine the strength of this limestone after deformation, the halfcolumn was then placed in in Enery testing machine and tested in compression. The 1"essure was gradually increased without developing any signs of distress until a load of 4200 lbs. had been reacher, when it suddenly crushed to fragments. Rude halfcones appeared to have sheand in at either end, which, however, were not coincident with the tances of cones of the original marble and strips split off the sides lomgitudinally, precisely as in the case of the columms of the origimat marble when tested in a similar mamer. Columns of the origimal marble, in all respects identical with those employed in the experiment, as has already been mentioned, crushed at a pressure of between 11,430 and $12,025 \mathrm{lbs}$. per square inch. The crushing loid of the marble of the deformed half-column is equivalent to $10,652 \mathrm{lbs}$. per square inch. Although therefore the two cannot be compared with absolute exactness, owing to their difference in shape, and to the fact that hat a single test of the deformed marble wats
made. nearly \therefore the that of the trace sliows this fi --the mater se end to place. are no as long adjuce, (fig. 3).

Cleavas grains, ev is no gre visible wa

Crushing lowl after deformation in Ihs, per suf. inch.

10,652

vithin was foum to re hetween the two split the mable so rock broke with : re.
h not in so murked white aplatance column in contact of the rock. 'This ing cleavage thees l-columns obtained till adhered tirmly s, which was quite dom where it harl appeared owing to he ends and atoner If retained. The bulged colnom,
mation, the halfcompression. The stress until a loand ents. Rude halfere not coincident ft the sides longiuble when testerl cts identical with shed at a pressure bidd of the marble inch. Although ring to their difrmed marble was

ON AN EXPERMENTAL INVETHGATION INTO THE FLOW OF MARBLE $37!$ made, it is clear that the deformed mamle, if not quite as strong, is at least very nearly as strong as the original rock. Twenty thin sections were cut from a portion r. the other half-column and exmminel under the microscope. The sections show that the deformed rock possesses a more or less distinct foliation except at the ends of the column, where pactically no motion haul taken phace. Heve scarcely any trace of foliation is visible. Catuchastic structure is absent, but ahmost every grain shows an excealingly tine fibrons structure. When examined umber a high power this fihons structure resolves itself into an extremely namow polysyuthetic twiming --the whole grain consisting of slightly simens twin lamelle, extinguishing in altermate sets. Each individual is usually twinned throughout, the lamelle passing from mad to end, although a single lamella often varies somewhat in width from place to place. The calcite grains which in the original rock are practically equidimensional, He now often distinctly flattened (fig. 2), some of them being three or even four times as long as they are wide. Some grains can be seen to have been bent around others aljacent to them, the twin lannellie and the extinction curving with the twisted grain (fig. 3). In other twisted indiviluals the twin lamellee only extend in to a certain

listance from the margin of the grain, leaving a clear untwinned portion in the centre (fig. 4) ; and other crystals again show not only the fibrous structure due to t wiming in one direction, hat broader lamelle crossing this obliquely. As the twinning in all cases is probably parallel to $-\frac{1}{2} R$ - this is due to the appearance of a set of twin limes parallel to a second face of the thombohedron (fig. 5).

Fig. 4.

Fig. $\overline{5}$.

Cleavage is not developed by the crushing, for it is not seen in the majority of grains, even where they are most deformed. The proportion of grains which show it is no greater in the deformed than in the original limestone. What cleavage is isible was probably developed during the grinding of the section, as it is seen in 3 с 2
places in scetions of all marbles. There has been nis hreaking-the roek has not been crushed in the ordinary sense of the term. The movement has been brought ahout partly hy twiming lont chiefly loy a deformation of the grains che to a slipping on their gliding planes. The strueture is essentially that presented by those portions of the marthe lying between the lines of gramulated calcite in the ease of the marble deformed nt the ordinary temperature. In the aeeompanying plates, microphotographs of the marhle befire and after deformation at $300^{\circ} \mathrm{C}$, we shown.

Plate 24, fig. 1, shows the appeamer of "thin scotion of the original Curam marhle in ordinary light, magnified 50 diameters. The individuals are approximately: "puidimensional, und oniy three or fome show twiming.

Plate 24 , fig. 2 , is the mathe after having been slowly defomed at a temperature of $300^{\circ} \mathrm{C}$., photographed between erassed nienls in polarised light and magnifieed 50 dimeters. The individual grains can be seen to be distinetly flattened in n horizontal direetion, giving a certain filation to the mek. The fibmons appearane above referred to, as due to polysynthetic twiming, is also seen.

Plate 24, fig. 4, is a microphotograph of a few grains of ealeite, the thimest elge of mother seetion of the same, taken hetween crossed nicols in polarised light and magnified 150 dimmeters. The polysynthetic twiming is well seen. Two sets of lamellie eross and two of the bands represented in fig. 5 of the text are seen on the left. The lamelle eurve somewhat and vary more or less in width from place to place.

In the ease of ice crystals a rise in temperature develons a greater ease of movement along their gliding planes, and this experiment seemed to show that the same is true of caleite. The individual grains are more plastie and aecommodate themselves to the deforming forcess by flowing aromud each other more readily rather than by breaking. The rock is therefore mueh stronger than when deformed at the ordinary temperature, the lines of eataclastic structure being apparently lines of weakness, As, however, the deformation in this experiment was carried on with extreme slowness, it was imponssible to determine in how firr this latter faetor had influeneed the result. Another trial was aceordingly made in which the deformation was earried ont guiek!. and at the same time at a mueh higher temperature. The amonnt of deformation induced in the marble was nearly the same as in the last ease. The height of tho column before compression was $1 \cdot 552$ inch, and after compression 1.352 inch ; that is to say, the column was shortened by 12.9 per cent. The time oecupied in the deformation, however, was only $8 \frac{1}{4}$ hours, and the rock was maintained at a temperature of about $400^{\circ} \mathrm{C}$; the extremes of variation of the temperature during the experment heing $380^{\circ} \mathrm{C}$. to $415^{\circ} \mathrm{C}$. The temperature measurements were made by means of a special modification of the Le Chatelier pyrometer, ealibrated by H. M. Tory. M.A., of MeGill University. On slitting the tube in the usual maner and inserting the wedge to split the marble, the latter was found to offer more resistance than in any of the fomer experiments, and was finally pmlted out of the separated

$3 N^{2}$

te rock hus not been been brought about itue to a slipping on by those portions of e case of the marble plates, microphotoshown.
he miginal Camman ware approximately
ed at a temperature ight and magnified etly flattened in : - fibrous apreanance
he thinnest erlge of molarised light and ieen. 'Two sets of' ext are seen on the idth from plaer to ater ease of moveiw that the same is modate themselves ily rather than bu red at the ordimary lines of weakness. extreme slowness, hencerd the result. aried out quickly int of deformation The height of the 352 inch ; that is occupied in the tained at a temature dhring the nts were made by librated by H. M. isual manner and more resistance of the separaterl
 halves of the tube without splitting in two as in nll other cases; lout unfortumately it was travensed by a fow slight cracks doveloperd in the process which rendared it impossible to test its strength. The surface whore it harl been in enntact with that hot collan was hown in colone and mantaned its polish, except aromed the central \%one of maximum hulging, where the lustre had disapmared. There hat lieen mo disassociation of the calcima comborate, as fingments of the powelered mathe tested vith moist tumeric pape: gare no trace of malkaline reaction. When sliced and examined under the microseope, the rock showed mo trace of eatachastic structure, but the grains were seen to be distinctly flattened, giving to the rock a foliation which in some places was very promonced. The calcite individuals showed the very namme polysynthetie twiming podmeing the fibmos apparance before deseribed. The twin lamollie are in some cases twisted, the twisting being aeompmaied by strain shadow, which phenomenon, however, in this rock is neither very eommon nor rey striking. The individuals we seen in many cases to have been squeered into very irreghlar shapes, and in some cases to have been finced into wedge-shaperl finms (fige bi), puite different fiom those of the regnlan mosatic of the original rock. The imdividual grains have to all appamace acted as phastic bodies. A very promomed movement along gliding planes, coinciding in diaction with the emuse of twin lamella, is undoubted.

Fig. 6 ,
Apart firom the evidence of this presented by the fin'm of the calcite indiiduals, direct evidence can be seen in many cases in the step-like outline of the grans, as shown in fig. 6, the steps colnciding in direction with the twin lanellie. la one instance, shown in tig. 7 , a lamella was seen to have moved inward betworn

Fig. 7.
two other very narrow lamelhe on either side. This is of especial interest, as it is precisely this movement of individual lamellae of measmable width over one another
that gives rise to the phenomenem of the "flow" of metuls as described in Section IV Galdeite, however, is apparently moln more prone to twin during this defomation than metals are, ulthough the greater diflienley of recogniwing twimming in metuls-
 ver uiny underestimateil.

- ham chamete of the movenemt in the case of quick deformation at a high tempera-

 all fracturing of catmelistic action is well serm. The tlattening of the graine is mose distinetly shown and is mpecially moticeable if it la compared with the seetion of the ariginal marble luwide it, toming fig. I of the same I'late:

1. Ineformation of the Rock at $300^{\circ} \mathrm{C}$. in the presence of Hutter:

It was next sunght to intronluce the third factor nhewe mentioned as prasibly having an inthence on rock refimation, namely, movisture.
For this purpose a menlification of the appanatus employed in the experiments just deseribed was used. A drawing of this is given in fig. 8. A hole was hored through the east-iron jacket (B), ass wall as theongh the omb of the wrought-irm cylinder (A which contamed the marble, sin as to reach the surficer of the steel pistom at H, just ahme its contact with the marble column. Therongli this hole a stont coprom pipe (K) was passed and having beren serewed into A was boracd. Water was then fincell through this tuhe loy mems of a hydranlic necumulater, similar in construction to that marked 1) in fige. I of Plate 22 , while at the simne time the requined temperature was obtained by means of a gas flame as before. Even muler the great hydrandic pressure employed, the water passed so slowly that the temperature conld be easily maintained at $300^{\circ} 1$: the water making its way between the side of the following a steel pistom amel the thbe (Λ) to the marble and passing through the latter and out of the lower stem piston lye the hole (N) drilled through it. In order to prevent the water entering at H from passing powards aloug the pistom instead of downward intn the marhle amb thus escaping, a hemey hass cap (P) was serewed on the end of the ring (Q), which in its turn was serewed into the jacket (B). The cap was turnend with a projecting ring on its lower surfice, while the upper sumface of Q was slightly hollowed. In the space (M) thus intervening between the two, a ring of lead was placed, which, on serewing down the cap (P), was rowel to oceupy the whole space and to make a perfectly water-tight joint aromed the plofor. This arrangement was repeated in the case of the lower steel pistom.

The Callendar thermoneter was inserted at r^{\prime} as before. In this way a column of

Height lrefo

 hemomemon in thein
at a high lompurn geg phates at at high ropheotegraph of wht and magnifiend t nowl firealom firon f the grains is atsu the section of the

Hiuter:
:irmed as pussibly

- experimentes just vins breal through -iron eylinder (A pistom at H, just n stout coppun Water was then ar in construction mur the requital 1 muler the great
 a the side of the following are the dimensions of the colmm stated in inches:latter and out of - to prevent the of lownward inte in the enl of the cap was turned f Q was slightly ing of lead was the whole space rangement wans way a column of
Expmiment L.

Height helore deformation.	Hefight atter deformation.
$1 \cdot 513$	$1 \cdot 127$

The column was thas shortened by :386 of : in inch, copuivalent to $25 \cdot 51$ per cent. entting through the lube the deformed marble was fomm, as in former experi-
ments, to be so hard that in steel wedge had to be employed to split it. The ends of the colmm were found to be nealy black in colon from the deposition upon them of a thin femuginons coating, derived apmanently from the inner surface of the iron accumulator be means of which the water had been forced through the rock, as a similar deposit was found lining the tubes conveging the water both to and fiom the marble. This deposit, which is probably identical with that above referred to as conting the surface of the marble, was fomad upon examination to be composed of wide of iron, a few little flakes of copper', carbonate of lime, ind some material insoluble in acids, probahly derived from the evaporation of the water on entering the heated portion of the apparatus.

In the thin fermginons coating on the end of the column, and thus immediately beneath the filce of the piston, a few minute flecks of metallic copper were alst visible, showing that a little copper had been dissolved from the copper pipe carryint the water firm the accumulator and redeposited on the surface of the marble. Thi coating although less pronounced was also visible aromid the sides of the colum where it was in contact with the heated iron tule enclosing it. It penctrates int. the mable for a short distance at one or two spots at the top and bottom of the colum, but is not seen elsewhere in the imer part of the marble.

On splitting open the marble column, cones conld be seen within it at either end but they were not very shanply defined. The deformed portion of the marble, that is to say, the portion of the column not included in the cones, presented the same dead white or chatk-like appearance noted in former experiments. One of the halves of the deformed limestone column after being freed from the iron tube was tested in compression in an Emery testing machine. The pressure was raised gradually with. out developing any signs of distress in the marble until a load of 3090 lh s. had beet reached, when a minute crack developed. The pressure was then gradually increasei to $3240 \mathrm{llbs}_{\mathrm{S}}$, when the column suddenly crushed. In breaking down it split fiom t (1) to bottom, like a perfectly homogeneons body, and without reference to the above mentioned cones. Two columns of the same marble employed in the experiment an of the same dimensions as the original column, when similarly tested, broke sudden! by shearing, under loads of 4870 lbs, and 57.60 lbs respectively. These figures, how ever, camot be used for the purpose of comparing the strength of the limeston before and after compression, as in the experiment at present under consideration, the bulge given to the marble was so considerable that with material of equal strengtl the new fom would certainly be considerably stronger than a half-colmm of that wiginal dimensions. In order to make a direct comparison, however, a fiagment the orginal marble was cat into the form of a holged half-colmmen of the same dimensions as that produced in the present case by compression. This when tested in compression suddenly sheared to pieces when the pressure rose to 3050 lbs .

While, therefore, the averages of a number of trials would be required to establisl the exact relative strength of the ariginal marble and the atarble after deformation
o split it. The conds of eprasition upon them of er slufface of the iron through the rock, as : hoth to and from the albeve referred to ar on to be composed of re, and some material water on entering the
and thus immediately llic copper were alsi e copper pipe curryins of the marlle. Thi sides of the colum

It penetrates int, i) and bottom of the
thin it at either end of the marble, that i sented the same dead One of the halves of n tube was tested aised gradually with of $3090 \mathrm{ll}_{\text {shs. }}$ had bect In gradually increasei own it split from tol erence to the above the experiment ani sted, hroke sudden? These figures, how? th of the limestonts er consideration, the 1 of equal strenget ${ }^{I}$ half-column of the ever, a fragment is :olumun of the sam" vi This when tested to 3050 lbs .
ryuired to establish e after deformation visible.

ON AN EXPERIMENTAL, INVESTIGATION TNTO THE FLOW OF MARBLE, 385

 the results of the test just described show that the marble after deformation is not weaker, but actually somewhat stronger than the original rock.A large number of thin sections of the deformed rock (some radial and some transverse) were prepared and examined. The rock shows the contimuons mosaic before referred to with the exception of a little turhid line or hand in each section, starting from the periphery of the top of the cylinder, and curving down toward the middle, following approximately the curve of the simfice of one of the comes. Uuder the microscope this is seen to owe its appearance to the presence of a number of fine an very narow reticulating lines, which appear to be lines of motion along which ahe the has leen a very minute gramulation of the marble. Between these, and elsewhere throughout the colum, there are no signs of gramulation or cataclastic strwetwe This gramulated material is so trivial in amount, that the deformachastic structure. be due exclusively to movemonts on the the deformation may he said to polysynthetic twiming. It i of the marble when def is thus inentical in chancter with that seen in the case individuals in the formed while dryer at $300^{\circ} \mathrm{C}$, or $400^{\circ} \mathrm{C}$. The calcite than tuals in the original rock are approximately equidimensional (none are more lian twice as long in one direction as in the other), but in the deformed rock a very distinct foliation is often seen in the thin sections, owing to the flattening of the calcite grains, many individuals being three or even fom times as long as they are wide. Some few of these flattened grains show strain shadows lout no twiming, while the grains in their immediate vicinity show well-defined twimning, giving rise to the fibrous appearance before described. In some cases a grain will show strain shadows at one end, which will pass into a very narrow polysynthetic twinning at the other. The twin lamelle in many grains are so narrow that even when magnified 1050 diameters, they are not very clearly resolved. The individual lamelle in sereral sets which were measured, were found to have an average width of between 000 and 0006 of a millim., and some were eren narrower.
Where the iron stain has penetrated into the sulstance of the rock, it appears under the microscope as little lines of ferruginons material hetween the calcite grains, which latter are twimed and fattened in every way like those alowe described. here are no signs of solution and redeposition of calcium cartmate even in this irontained portion of the rock,
The presence of water, therefore, did not influence the chanacter of the defiomation. is just possille, however, that there may have heen a depusition of iufinitesimal mounts of calcium carhonate along very minute cracks or fissures, thus contributing maintain the strength of the rock. No signs of such deposition, howerer, are
IV. Comparison of the Structures producled in Carrara Marble by Artifichal Deformation with those produced by Deformaton in the cise of Metaln.

Müthe,* whose researches in thre movements set ul by pressure in ice, and in various minerals and artificially pre ${ }^{\prime}$ red salts, are so extensive and so well known, in a paper read on Jamary 14, 1899, presents the results of his investigations into the effect of pressure on metals and the nature of the movements resulting from it ; and, in two papers read on Mirch 16 and May 18 respectively of the same year. Ewing and Rosenimant describe a series of investigations carried out by them on the same subject, and which cover practically the same ground and yield the same resultis. It is pointed cint that all simple metals when examined under the microscope, are seen to b_{x} allotriomophic aggregates of metallic crystals. the structure being precisely that of : block of marle.

When the metal is defimmed by compression or tensim, the effect being identical in both cases, the movement is fomm to be due to the distortion of each grain ly slipping along gliding planes, with or without the accompaniment of twimning. This was ohserved in gold, silver, platinum, tin, copper, lead, cadmium, lismuth, antimony, nickel, iron, steel, and varions alloys. It is in fact in this way that metals move or "flow" when submitted to pressure or impact.

Polysynthetic twiming was found to accompany the movement on gliding plauts. in the case of most of the metals emmerated above, both phenomena often presenting themselves in the same grain.

Mücge shows that in the case of soft iron, gliding can take phace along six planes. and that twiming is probably also developed by pressure. Ewing and Rosenhais, in their first paper, give three photographs of the same surface of soft iron showing the results of progressive deformation of the comstituent crystalline grains under pressure, which photographs could not be distinguished from those of thin sections of the marble described in the present paper at corresponding stages of deformation. In the case of a specimen of Swedish iron, strained by a pull, the width of the lamelle between the lines of slip was found to a arerage $1 / 400$ of a millim.

Messis. Ewinc: and Rosentian sum up the results of their experiments in the following words:-
"These experiments throw what appears to us new light on the character of $\mathrm{p}^{\text {lastic strain in metals and other irregular crystalline aggregates. Plasticity is due }}$ to slij, on the part of the crystals along cleavage or gliding surfices. Euch cerstalline grain is deformed ly mumerons internal slips occuring at intervals

[^6] throughout its mass. In general these slips 110 doubt occur in three planes or possibly more, and the combination of the three allows the grain to accommodate itself to its envelope of neighboring grains as the strain proceeds. The action is discontinuous; it is not a homogeneous shear but a series of finite slips, the portion of the crystal between one slip and the next behaving like a rigid solid. The process of slipping is one which takes time, and in this respect the sond. The process easily distinguishable from the deformation of a viscous liquid.
"We infer fiom the experiments that 'flow' or non-elastic deform. oceurs through slip, within each cerstalline another along surfices of clearage or gliding gram of portions of the erystal on one the prortions whieh slip to be other thang smfaces. There is no need to suppose involves the expenditure of work in an perfectly elastic. The slip, when it ocens is an aggregate of irregular crostals that insible mamer. It is because the metal defomed in amy manner as a result of it is plastic as a whole, and is able to be Plasticity requires that each portion shond ships occurring in individual crystals. position. Each erystalline grain chanres it be able to change its shape and its itself, and its position through slips occuring shape through slips occuring within

By a comparison of ther shps occurring in other grains." in the present paper in the results in the deformation of metals with those presented between the two is so close that thation of marble, it will be seen that the agreement movement of heated marble in comperm "flow" is just as correctly applicable to the the movement which takes place in gold wh, moler the conditions deseribed, as it is of in a viee, or in iron when a billet is pascel hen a button of that metal is spueezed flat v. (tusiansus op
I. Comparmon of the Structures prodeced in Carraria Marbme by Arta flelal. Deformation with those obsehien IN the Linestones and
 While the microscopie strmetar The Larthes Crustr. made the subject of most exhamstif of the silicated rocks of the earth's crust has been paratively little attention has been researches during the past half-century, commarbles. The papers which have paid to the minute structure of limestones and limestones, and there is but little imperred on this subject deal chitfly with unaltered Praff,* in his somewhat extendention made of structures resulting fiom pressure. widely sepmated localities, in whed study of limestones and dolonites from many rocks, representing, however, chietly he eximined some 700 thin sections of these not mention a single instance in which mered strata of Mesozoic or Neozoic age, does that in only two instances was a species of fohation in the rock. battening of the calcite grains seen, producing a

> * "E Einiges ubler Kilksteine umd Dolumite." "Sitchum
 3 D 2
specimen of the well-known Lochseitenkalk from some locality not specified, whe the other from the Flischerberg, near Ragut\%.

Vogr,* in his recent studies on marble, mentions cataclastic structure only in the mablers fiom a few localities along the contact zone in Velfjorlen, where it was proalnced by dynamic action on the already altered limestones of the contact zone. He states that this structure often makes the marbles of this district so brittle that they are unfit for use, but mentions no case in which any foliation in the marble is produced by the flattening of the calcite individuals.

Catachastic structure has been noted in a few instances in marbles from other parts of Euroje, lat it would seem to be very uncommon. The development of a foliation through the mechancal flattening of the calcite grains by dynamic action is, with the exception of the cases mentioned by Prafr, so fir as we are aware, unrecorded. Ham refers to this structure in certain Swiss limestones, but regarls the grains as broken fragments.
'Twimning in the calcite of marbles is common, and has fieguently been described. Prafr states that it is rare except in the primitive limestones ("Urkalken"), where it is always present. Zarkeli states that, as a rule, the greater proportion of the calcite individuals in marbles are untwinned, but that when present twinning is for the nost part madoubtedly due to pressure and has a " (ileitflichencharakter."

As, therefore, but very few dynamically altered limestones or marbles have been made the sulject of a microseopical study sutficiently detailed to enable a comparison to be instituted between their structures and those seen in the artificially deformed limestones described in the present paper, a series of $4: 2$ limestones and marblas from highly folde! or metamorphosed districts were selected and studied for the purpose of instituting such a comprison. The following is a list of the limestones and markles selected, with the lacalities fiom which they were derived. The list is divided into three purts-the first comprising the rocks in which the effects of the movements, due to dynamic action, are distinctly visible, and either closely resemble or are identical with those secn in the artificially deformed marbles; the second embraces several mesozoic limestones fiom intensely folder portions of the Al ps, whose structure is of rombtful origin; while the third includes those rocks in which evidence of movement mader pressure is conbtful or absent. Of the $4:$, as will be seen, 15 exhibit the structures seen in the artificially deformed mables described in this paper.

Limestones and Marbles showing the Structures of the Artificially Deformed Marbles.

 1. Marble. Troviken, Norway.\therefore., Tyrol, Austria.

[^7]fied, and the
only in the e it was prot zone. He the that they marble is 1 other parts of a foliation I is, with the unrecorderl. he grains as en described. zen "), where rtion of the rimning is for ster:"
es have beent a comparisom lly deformed mul manhes died for the e limestones
The list is ffects of the ely resemble the second Alps, whose ich evidence 1 be seen, 15 uthis parer.
ed Marbles.

3. Marble. Andermatt, Switzerland.
4. ." Schaftelen,
5. Limestone. Biitzistöckli, Switzerland.
6. ", Flims,
7. ," Griesbach, Germany.
8. Marble. Carrara, Italy.
9. " Lot 12 , Range V., Township of Burleigh, Ciunada.
10. ". Lot 11, Range IV., 'lownship of Burleigh, C:anada.
11. "Lot 38, Range VIIL., Township of Anstruther, Canata.
12. ,. Lot 29 , Range Xl., 'lownship' of C'urdiff, C'inada.
13. Limestone. Lot 28 , Range XI., Township of Monmouth, Canadia.
15. Marble. Lot 27 , Range XIV., 'Township of Mommouth, Canada.
15. Marble. Lachute, Province of Quebec, Ganada.

Meso:oic Limestones fiom the Alps whose Structure is of Doubtful Origin.
16. Limestone. Längis Grat, Switzerland.
17. :, Lochseite,
18. ., Siasberg,
19. .. Fairnigen,
$20 . \quad$., Meienthal,
21. ., Haslithal,

Limestones and Marbles not showing uny distinct Pressure Structures.
22. Marble. Pentelicus, Greece.
23. ", Hymettos,

24 . ", Segelfor, Norway.
25. " Leifset,
26. ," Kvandal
$27 . \quad$, Saxenvig,
28 . ", Langesundfjord, Norway.
29. Limestone. Asker, No way.
30. Marble. Carassiner Thal, Switzerlaul.
31. " Ascona, Switzerland.
$32 . \quad$ Lot 30 , Range IX., 'Township of Methuen, C'anada.
33. ", Lot 8, Range IX., Township of Monmouth, Canada.
34. ". Lot 9, Range XXIII., 'lownship of Cardift', Canada.
35. Dolonite. Lot 16, Range Vl., 'Township of Cardiff, Canada.
$36 . \quad$ Lot 15, Range XI., Township of Wollaston, Canada
37. Marhle. Let 15, Range XIII., Township of Galway, Canada.
38. "Lot 13, Range XIV., Township of Latterworth, Canada.
39. Marlle. Lot 14, Range 1II., Township of Lake, Camada.
40. Limestone. Lut 1, Range I., Tonnship of Lake, Canaia,
41. . Lot 16, Range XII. Township of Wollnston, Canada.
42. Marble. Lot 1:2. Range V., Township of Burleigh, Canala.

> Limestones and Marbles showing the Structures of the Artipucielly Deformed Marbles.

1. Murble. Troriken, Norenay.-'This is a beantiful white marble from the contact zone in the Velfjorden. It is cited by Vot as an example of a marble showing cataclastic structure, and is figured in his priper on marble before referred to. It is eomposed of large irregular-shaped individuals or fragments of calcite, embedded in a mass of smaller grains. In the hard specimens the cleavage surfaces of the large individuals can often le olserved to be bent or curved in a striking mamer. Under the microseope the large grains are seen to be in the act of heaking down into smaller grins. Almost every grain is twinned, and the great majority show strain shadows, - hich are often very markel. 'The structure is catachastic, the smaller grains having been derived from the hreaking down of larger ones, some of which survive in part as the remnants. 'There has not, however, been that rolling out and flattening of the grains seen in No. 13. The rock is stated by Vogr to owe its coarsely erystalline character to contact metamorphism, and its secondary araclastic structure to sulssiquent dynamic action.
2. Marble. Tyrol, Austrit.-A medium grained white satharoidal marble of Liassic age, the precise locality of which it hats been impossible to ascertain. Tha rock has undergone incipient deformation, and under the microscope presents an "ppearance similar to that seen in those artificially deformed marbles where the motion is due to twiming and gliding. $\mathrm{T}^{\prime \prime}$, indiviluals of calcite with scarcely a single exception are twimed, often showing a domble set of twin lines crossing one ancther. Many of the grains are bent or twisted along certain lines marked hy deep strain shadows. The individual grains are "pproximately uniform in size and usually come together along smooth sweeping lines.
3. Marble. Alte Kivke, Andermatt, Switerlend.-This well-known marble, believed to be of Jurassic age, and which has, according to Hem, been reduced to one-tenth of its original thickness by the enormous pressure to which it has been subjected cluring the folding of the $\mathrm{Al}_{\mathrm{l}} \mathrm{s}$, is distinctly foliated, consisting of rude bands of larger and smaller grains of calcite. 'The foliation is chiefly dae to the flattening of the calcite grains. Almost every grain is twinned and many show strain shadows. 'The sections also show little streaks or areas of much more finely crystalline calcite, containing a good deal of dark colouring matter, a mparently a carbonaceous pigment. These are quite different in structure from the rest of the rock, and evidently represent the last remains of the original fine-grain limestone, from
the al sericit probal graine twinn moven that thin s Nicols of the the fiel ed to. It is bedded in a te large indi-
Uisder the into smiller ain shadows, mains having ve in part as ening of the erystalline ne to subse-

1 marble of stain. 'The presents all ; where the h scarcely a crossing onte marked by in size and
vil marble, reduced to it has been ng of rude due to the nany show more finely purently a rest of the stone, firom the alteration of which the marmle was produced. There arr a few little strings of sericite between the calcite grains at intervals. While the movements in this reck probably tork phaee chiefly lrefore or during its recrystallisation from the fine grained limestome, the flattened chancter of the grains, accompanied as they are bex twinning and stain shadows, indicate that there have been very considerable movements in the rock since its reerystallisation. The structure closely resembles that of the Carrara marble artificially deformed at $400^{\circ} \mathrm{C}$. A microphotograph of a thin section of this roek is shown in Plate 22, fig. :2. It is taken between crossed Nicols in polarised light, amd is magnifiet 70 diameters. A part of one of the areans of the finely crystalline aggregate ahove mentioned is seen at the margin of
the field.
4. Merble. Vear. Schatelen, Suitierland.-This oceurrence, believed to be Upper Jurassic (Malm) in age, is crossed by the Susten Road near the village of Schaftelen. Like that at Andermatt, it has been caught up in the folding of the Al_{p} and the rock has been greatly compressed. It is a pure white marble, consisting of a very fine-grained alahaster-like base, in whieh there are mumerous remnant, of large twisted calcite individuals which are almost entirely destroyed by nataclastic action. These have an irregular elongated form, with their longer axes generally parallel to one another. Under the microseope the rock is seen to possess a most perfect cataclastic structure. The large calcite remmants are traversed by norow twin lines and show most pronomed twisting, with strain shadows and other accompanying pressure phenomena. Many of them are seen to he in the aet of disippearing by heing resolved into a mass of smaller grains like those making up, the mass of the roek. Tlee smaller grams, prodneed in the way described, are flattened in one platne, having the form of little disks or cakes of somewhat irregular outline, as can be seen hy examining sections cut parallel with and at right angles to the foliation of the rock. They do not show twinning, but frequently show strain shadows. The fine-grained portion of the rock somewhat resembles No. 5. In this roek both cataclastic action and the flattening of the small grains resulting from the lreaking down of the large ones, by what must he a movement on their gliding planes, is plainly seen ; both of which are structures exhibited by artifically deformed marble. Although the deformation of the calcite in this case is undoulted and intense, the twinning lines are not nearly so numerous as in the artificially deformed rock. The conditions here have evidently heen less favourable to twinning.
5. Limestone. Büt:isföckli, Switzerland.-A. limestone of Upper Jurassic awe (Mahn) from the Canton of Glans and forming a protion of the Glamer Double "olel. As shown by Hem, it has heen greatly squeezel and rolled out by the pressure to whieh it has been sulgected. It is greyish-bure in colour, has a slabhy structure, and shows no signs of reerystallisation. Under the microseope it is seen to be so extremely fine in grain that an enlargement of 500 diameters is barely sutfieient to resolve it. In strueture it chosely resembles the finely granulated ealcite
in the little shear zones of the artificially deformed marble. There are, however, a few rather coarser-grained streaks in the section, and these are composed of calcite grains which show marked twimning, and which are being broken down by granulation into minute grains like those composing the mass of the rock. These latter are scell under a very high power to be distinctly flattened, while the pigment still remains as mimute black duts seattered throughout the mass. The somewhat coarser-grained streaks evidently result from the rolling out of little veins of caleite formed in the rock during the carlier stages of its deformation, as shown ly. the fact that they cut oblicuely across the folliation of the rock in many casess. They consequently are free from pigment, hut have been greatly crushed by later movements, and now consist of small calcite fragments in a finely granulated gromudmass, presenting a typical catachastic structure. These fragments have precisely the same "fibrous" structure as that seen in the calcite of artificially deformed marbles. The fact that these later veins have not been recrystallised would seem to indicite that the finer grained groundmass of the rock is stul intact in this respect, and that the flattening of the minute calcite grains has prolarily been produced by the pressure to which the rock has been subjected, as it is in the case of the Carnam marble in the experiments described in this paper.
6. Limestone. Flims, Switserland.-A very fine-grained bhish Upper Jurassie limestone, showing structures similar to those described in No. 5.
7. Limestone. Giriesbach, Eregebinge, Germany-A light gley gramular limestone or marble, rather fine in grain, with an indistinct bandef appearance caused by the alternation of lighter and darker streaks or bands. Under the microscope the rock shows what is to all appearmess a well-marked cataclastic structure. There arr larger grains of irregular elongated finm, with their longer axes lying in the same direction, and between them smaller grains which look as if they had been torn fiom the larger ones. Almost every grain, large or small, is highly twinned, often showing two sets of two lamelle crossing one another. The twiming is usually in very narrow polysynthetic bands, often so narow that the grains have a fibrous appearance, exactly like that in the artificially deformed linestones. Strain shadows are also common, but usually the grains are so lighly twimed that the strain seems to have been relieved in this way. The larger grains are often as much as seven times as long as they are wide and are ragged in outline. The whole appearance of the rock indicates movement under great compression. The structures are exactly those seen in the deformed Carrara marhle. The cataclastic structure, however, as in Nos. 10 and 11, has a more coarse-grained development than that produced artificially. The original rock was composed of larger individuals, and the granulated material is not so finely triturated. The other structure, which consists of the deformation and flattening of the component individuals of the rock by twinning and movement on their gliding planes, is exactly like that seen in the Carrara marble when deformed at $300^{\circ} \mathrm{C}$, or $400^{\circ} \mathrm{C}$. In thin sections the finer-grained portions of this

Griesba murble this roo polarise of quart
e, however, a ed of calcite by granulaese latter mre pigment still e somewhat the veins of as shown many cases. red by later ted groundprecisely the ned marbles. to indicate respect, and need by the the Carma

per Jurassie

ar limestone

 used loy the ope the roek There are in the same n torn from ten showing lly in very ous appeathhadows are in seems to seven times ance of the actly those ever, as in luced artigranulated sts of the iming and arble when ons of thisGrieshach limestone cannot be distinguished under the microscope from the Carrara murble deformed at $400^{\circ} \mathrm{C}$., the structures being identical. Λ microphotograph of this rock is shown on Plate 22, fig. 3. It was taken between crossed Nicols in polarised light and is magnified 70 diameters. The rock also contuins a few grains of quartz and muscovite which usually show marked strain shadows.
8. Marble. Carrara, Italy-Carrara marble is usually free from any evidence of pressure or deformation, its normal character being that of the marble described and figured in the former part of this paper, and upon which the experiments in deformation were carried out. In this specimen, however, there is a suggestion of parallelism in the glistening cleavage surfaces of the broken rock, and under the microscope the calcite grains show a distinct tendency to assume a flattened form. A very large proportion of the grains are twinned, and strain shadows are seen in some cases. The appearance of the sections indicates that the flattening of the grains has been produced by movements along gliding planes under the influence of dynamic action. As in the case of No. 15, pressure acting suhsequent to the recrystallisation of the rock has probably set up movements in certain parts of the mass, from one of which this specimen has been derived.
Nos. 9 to 15 are from the Grenville series, of the Laurentian system, of Canada. The first six are fiom the counties of Peterhorough and Hastings, in the province of Ontario, in the district to the north of the lake of that name, and the last is from at puint about 40 miles west of Montreal, in the province of Quebec.
9. Murble. Lot 12, Runge V., Tounship of Burleigh, Ontario.-This marble comes firm the same great limestone belt as Nos. 10 and 11, although several miles distant from the locality from which the latter was oltained. The stratigraphical relations point to great movements along this line, a fact which is borne out by the structure of the limestones themselves. The limestone at this locality is corrsely crystalline, in some cases beconing very coarse, the constituent grains being as much as an inch in diameter. As in the case of the Carrara deposits, it is for the most part massive and free from any foliation, but along certain lines, or bands it presents a very marked foliation, and cataclastic structure is distinctly seen in hand specimens, large and more or less lenticular and much twisted calcite remmants lying with their longer axts parallel to one another in a fine-grained base derived from their partial destruction. Under the microscope the evidence of this action is most striking. The large remnants are twinned and curved, showing marked strain shadows, and can in many eases be seen to be in the act of breaking down into smaller grains, especially about their margins. A microphotograph of the rock is shown in Plate 25 fig. 3. It is taken between crossed Nicols in polarised light, and is magnified is diameters. In the small grains constituting the base twinning and strain shadows are also frequently seen, and there is presented a distinct tendency to flattening in the same direction as that in which the longer axes of the large remnants lie. A number of twisted grains of quartz, showing very marked strain shadows, and in some cases even a marked granulation, are also present in the rock.
rol. CxCr.-A.

10 Marble. Lot 11, Range IV., Tounship of Burleigh, Ontario.-'This is identienl with No. 9, except that the base is very much finer in grain. The larger remmants are so highly twimed that they often present the fibrous njpearance before refermel to. They lie senttered nbout in the fine-grained base, and wedge-shuped tongues of the finer-grained materind can often be observed penstrating them. The structure is identical with that seen in the Camara mable when deformed at ordinary temperatures, that is, with a marked development of catachastic structures rather than of movement on gliding planes. The whole in the case of the matural mambe, however, is on a larger scale; the original rock was more consely crystalline, and the resulting product was not so finely granulated.
11. Marble. Lot 38, Range VIII., Township of Anstruther, Onterio.—Practically identical with 10 in every respect. A microphotograph of a thin section of a highly gramulated portion of this roek is shown on Plate 25, fig. 4. It is photographemb between crossed Nicols in polarised light and is magnified 70 diameters.
12. Marble. Lot 29, Range $X I$., Township of Cardiff, Ontario.-A very finegrained marble, throngh which are distributed occasional large twisted calcita remmants, which indicate that the roek in its present form has resulted from the gramulation of a coarsely erystalline marble. The rock ben's a very strong resemblance to No. 4, but the gramulation is more advanced and the colcite remnants less numerous. The granulated portion of the rock is also identical with chat of No. 10 ; in fact, No. 10 , if more comptetely granulated, would be identical in character with this rock.
13. Limestone. Lot 28, Range $\boldsymbol{Y} I$., Township of Monmouth, Ontario,--At two places in this township (Nos. 13 and 14) the consely crystalline white limestone of the Laurentian contains somewhat irregular-shaped streaks or bands which are lunish. black in colour and very fine in grain. These are portions of the original limestone in a comparationly unaltered condition. In these bluish-black portions the calcite grains are very small, and have the dark carbonaceous coloning matter distributed all through their substance. An enlargement of 500 diameters is required for their study. With this power the rock is seen to be perfectly crystalline, the minute calcite individuals being fitted together along boundaries which are smooth or in sone cases slightly crenulated. The grains are usually distinctly flattened, but this is mot seen in all eases. Some of them are twimed, and many of them show stain shadows. The white marble with which this blue limestone is associated consists of a much more coarsely grained aggregate of calcite grains. These show the most marked evidence of motion, being very much twisted and flattened in the direction of the foliation of the rock, with twinning and very pronounced strain shadows. The carbonaceous pigment has been destroyed. Distributed in the usual more or less rounded forms through both the blue and the white varieties, but especially abundant in the latter, are grains of several other minerals-plagioclase, pyroxene, biotite, \&c.-the results of metamorphic action. These generally show the effects of pressure, often in a striking manner.
s is identical ger remumits fore referterl d tongules of structure is uy temperaher than of de, howew, the resulting
-Practicilly of a highly hotographed I very finested calcitu ed firom the rong rescillmnants less of No . 11 ; uacter with
o.--At two imestone of 1 are bluish limestone in the calcite distributecl red for their the minute or in solle this is net in shadows. much more ad evidence foliation of urbnaceons nded forms the latter, -the results often in : deformation of the calcite grains by motion on their glidit... mese. Es nely the migimel bhe limestone was recrystallised throughout the greater purt of it in es with the dovelopment of numerous secondary minerals, whel the whole was the sulbjected to dynumic action, which resulted in the movements described, which, while affecting louth rocks, ure most noticmate in the coarser-grained mathle.
14. Limestone. Lot 27, Renge X'IV., Tounship of Mommouth, Ontario, -Identical in character with No. 13.
15. Marble. Lachute, Proriuce of Quebec.-This rock has a very distinct foliated structure, the plane of folintinn laing emphasised by the presence of little graphite flakes, which have the apmearace of being smeared along it. The rock has a marked cataclastie structure, and has clonty been derived from the syneezing of a coarsegrained marhe. The deformation of' the calcite grains, acempanied by strain shadows, is very marked in all hut the smallest grains, which would problatly show the phemomenon also if their surfices were sufficiently lavge to remere the shatows visible. Twimning is also common, although many grains which show a marked defomation are firee from all traces of it. While, therefore, the structure is cataclastic, it is combined with a most marked development of defomation of the alcite grains by movement along their gliding phanes.

Mesozoic Limestones from the Alps whose Strneture is of Donbeful Origin.

The Jurassic limestones which have been caught up in the mighty foldings of the $\mathrm{Al}_{\mathrm{ps}}$, and which are found not only in the flanks of the momitain system but along certain lines in the deep synclinals of the chain, althongh extremely compressed and contorted, in many cases show but little signs of alteration, while elsewhere they have become converted into coarsely crystalline marhles. The marbles of Andermatt (No. 3) and of Schaftelen (No. 4) are helieved to he of Mesozoic age, and to represent these limestones in their highly altered condition; while the limestones of Bützistockli (No. 5) and Flims (No. 6) represent the rooks in a comparatively umaltered state. The former, as has been shown, present certain structures which are clearly attributable to deformation under pressure, but in some of the mesozoic limestones which have undoubtedly been extremely plicated and subjected to mormous internal movements, the evidence of these movements in the minute structure of the rock is by no means striking. To the latter class belongs the rocks of this division, Nois. 16 to 21 . Their structure is in all cases essentially the same, and they are closely related to Nos. 3 and 6 described alove. This structure is that which is the most important element in Hern's "Umformung ohne Bruch." The individual grains of calcite are flattened at right angles to the pressure, and in the direction of the movement of the rock. Whether, however, this flattening, inducing what Heim terms "microclivage," has been brought about by pressure, the flattened grains flowing on their gliling planes and moving over
one another nul this mbays abapting their shape to the space to bee recupied, it whether the structure is in part due to recrystallisation, is mot perfectly certain. Hın holds the former view, and believes that microclivge and fluidal structure are "somp. tially the same. "Es gilit in der That," he writes, "keine Grenze und keinen wirklichnoln mechanischen Unterschieel awischen heiden."* If this he the true explanation of the structure, these rocks are closely related to those of the elass just described. Wi. intend in a sulsequent series of experiments, making use of tine-grained limestemes, to endenvour to reproduce this atructure also by artificial compression, ant thus, it passible, to detemine its origin.
16. Limestone. Laingis Cirnt, Sucitserland.-A tine-grained grey limestone from the Langis Grat, which rises amwe the Furka Road, onmwite the Rhane Cilacier, an! which is helieved to be a contimation of the same limestone as that which further east mpears as the Amdermatt marble (No. 3). It brenks up into long thin chip-like fragments, and where it disintegrates in damp phaces fills into a mass of needle-lik. calcite grains. It is indistinctly streaked in very narrow lines in lighter and darker shades. With the exception of a little carbonnceons matter and a few mica phates it zonsists altogether of culcite. In some phoes it holds belemnites. It has a very (istinct folinted structure, due to the calcite grains heing all flattened in one direction. 'The mass of the rock is mule up of very small grains, but there are at intervals lines of similarly flattened grains of larger size. As shown ly the study of lougitudinal and transverse sections, the grains have the shape of short laths of irregular outline. resembling very closely in form the little leaves of guartz seen in certain gneisses, and are frequently as much as six times as long as they are wide. The larger grains are frequently twinued, but the smaller grains ravely show this structure. Strain shadows are not seen. It seems doubtfin whether this structure is attributable to recrystallisation in the case of such a fine-grained limestome which still retains its. organic pigment. It is not cataclastic, but may be due to the flattening of the calcite grains by gliding, under the influence of the great pressure to which the rock has been suljected.
17. Limestone. Lochseite, Swit:crland.-The Milm limestone which is such a striking element in the succession in the Glamer Double Fold, and which derives its local nane from Lochseite, near Schwanden, presents the same flattening of the constituent culcite grains as described in No. 16. The rock from Lochseite itself is very impure and extremely fine in grain, so that the structure is not well seen, lout the elongation or flattening of the minute calcite grains composing the rock was observed in a number of slides of the Lochseiten-Kalk from varions localities, which are preserved in the collections of the Geological Department of the Unisersity of Zürich.
18. Limestone. Suasberg, Stitecrland.-The rock from the Saasberg, near the Biitzistöckli, shows this structure excellently.

* 'Untersuchungen über den Mechanismus der Gelirgshildung,' Bd. 2, p. 56.
$19 . I$
as syuclit at Fuirni in that some cas white Under grains, li of darken unt winn of the e There ar origin is

20 . Li
labelled sis sume stin ma identic
21. Lin Heim's ' I calcite int folled in the rock thins form in charact rock beca becoming flattening course, the grain. Th calcite grai

The lime vilual dess pressure.
the recrysti described b certain of tl mosaic is pr

* 'Gico
 as synclime of Mesozaic reeks is pinched in lyy the folding of the Alps. Among these
 in that it contains mumboms belemnites, which lave been greatly chmgated and in some cases tom "phart. The romk shows no signs of merystallisation, except that white caleite has been deposite $\begin{aligned} & \text { iretween the fingments of the hooken belemmites. }\end{aligned}$ Unler the mieroseope it is seen to be emmosed of very mimute chmanted enteito grains, then thase uhwe described. There are also dotted all throngh the roek, groups of darker coloured grains of athombohedral carbomate, prolnhly dolonite. 'These wre untwinned und anmarently mernshed. The foliation of the rock, dur to the flattening of the calcite grains, curves around them ns it does aromal the gamets in a sehist, There wre also lines of mone coarsely erystalline caleite, as described in No. 5 , whose wigin is identical in both enses.

20. Limestone. Meienthet, Suitzerhend.-Other specimens in the Zitrich collection lubelled simply "Meienthal," but probubly abo from nen Fiamigen, show exactly the same structure as desoribed in No. 19. The little elongated calcite grams not laving an identical orientation extinguish between crossed Nisols in different positions,
21. Limestone. Huslithal, Switzerlund,-This rock, which is a typical example of Heim's 'Bruchlose gefaltete Malm Knlk,' shows the same flattening of the minute calcite individuals comprosing it. The little calcite veins referred to in No. 5 are here folled in with the rock und are more conrscly erystalline. Their presence shows that the rock was at first hittle and became shattered moder the pressure, the fissures thus formed becoming filled and giving rise to calcite veins more coarsely crystalline in chmacter than the rest of the rock. With the contimance of the pressure the rock beame phastic and the veins were folded, the calcite grains composing them becoming flattened like those constituting the mass of the rock. The plane of the flattening or foliation of the grains cuts across the veins quite irrespective of their course, the position of the latter being marked by their lighter colour and coarser grain. The motion evidently took phee in commection with the flattenitng of the calcite grains, and possibly, as above noted, by their movements over each uther.

Limestones and Marbles not showing any Distinct Pressure Structures.

The limestones and marhles of this class (Nos. 22 to 42) do not here merit individual description. They do not present any undoubted evidence of movement under pressure. Their structure is that of a mosaic, apparently resulting in each case from the recrystallisation of a previously existing finer-grained limestone. 'This process, as described by Lepsius* in the Attic marbles, consists of the enlargement or growth of certain of the constituent grains at the expense of others until fimally a coase-grained mosaic is produced. Traces of this are seen in several of these rocks. Twinning is

[^8]often present, hut there has been mo distinct alteration in the slape of the grains by pressure. The individual grains are, in some cases, very irrogular in shape and often come together along more or less crenulated lines, and in No. 24 the pecular intergrowth of separate calvite individuals described by Voci** was onserved. The structure of the limestones and marbles of this class is in fact quite diflerent from thase inchuded in the first list, although they might readily give rise to such rocks ans these, were they subjected to dynamic action mular the repuired combitions.

It will thus have hern seen that the deformed limestones and marbles met with in nature, present in many cases at least precisely the structures developed in marble ly ing of the component calcite individuals either with or without the conconitant development of twiming and strain shadows, these latter phenomena being almost invariably seen in the larger individuals but less frequently ohserved in the very small grains, apprently on accome of the very smalluess of their surface. When a large, highly twinned and straned calcite individual is olserved broaking down into a mass of smaller groins, it can lo distinetly seen that each individual grain resulting from this gramulation is so small that it is, in the great majority of cases, derived from a single twin lamella, and its surfice is so limited that the strain shadow upm it would the scarecly noticeable.

While, therefore, recrystallisation undoubtedly plays an important, and in many cases probably a chief, part in the g, movements which are onserved to have taken place in the limestones of contorted districts, this process is ly no means the only one by which such movements are brought about. Many limestones under pressure in the carth's crust flow precisely as metals do ly defermation of the compressed grains and without the intervention of water or any other solvent.

VT. Summary of Resulis.

1. By suhmitting limestone or marble to differential pressures exceeding the elastic limit of the rock and umber the conditions alescribed in this paper, permanent defomation can bre produced.
2. This deformation, when caried out at ordinary temperatures, is due in part to a cataclastic structure and in part to twimning and gliding movements in the imdividual crystals componsing the rock.
3. Both of these structures are seen in contorted linestones and marbles in uature.
4. When the deformation is carried out at $300^{\circ} \mathrm{C}$., or, better, at $400^{\circ} \mathrm{C}$, the catiaclastic structure is not developed, and the whole movement is due to changes in the shape of the component calcite crystals, by twiming and gliding.
5. This latter movement is identical with that procluced in metals by squeezing or

Fig. I. Th

Fig. e. Th

10 grains by $\mathrm{p}^{\text {re }}$ and often eculiar intererved. The ifferent from wheh rocks as Ls. met with in 11 marble by first place. and flattenconconitant reing almust in the very c. When a g down into in resulting lerived from ow upon it
nd in mamy have taken he only one pressure in ssed grains
the elastic permanent a part to a ents in the in nature. ., the citiato changes ling. neering or
hammoring, a movement which in metals as a genemal rule, as in marble, is facilitated by inerease of temperature
6. There is therefore a flow of martle just as there is a flow of metals muder suitable conditions of pressure.
7. The movement is also identical with that seen in glacial ice, although in the latter case the movement may not be entirely of this character.
8. In these experiments the presence of water was not observed to exert any intluence.
9. It is believed, from the results of other experiments now being carried out hout not yet completed, that similar movements can, to a certain extent at least, be induced in grounte and other harder erystalline rocks, aud that several structures developed in these rocks in matme in highly contorted regions can thas be reproduced.

Explanation of Plates,

PLATE 22.

Fig. 1. The machine used in the investigation. A mathle column is in process of deformation. The experiment is being carried out in the athsence of moisture and at the ordinary temperature. The small boiler on the extreme right does not belong to this machine.
Fig. 2. Thin section of the martle from Alte Kirke, Audernatt, Switzerland. The grains are slightly flattened in a horizontal direction, and are repeatedly twimed in almost every case. On the right there is a finc-grained aggregate which represents a remant of the original fine-grained limestone, from the recrystallisation of which the marhle was derived. The structure resembles that of Carrara marhle artificially deformed at 300° or $400^{\circ} \mathrm{C}$. Photographed let ween crossed Nicols. $\times 70$ diameters.
Fig. 3. Thin section of the limestone or marble from Griesbach, in the Erogelirge. The smaller grains have probably heen derived from the breaking down of harger individuals, a portion of one of which is secm. All the grains show most pronounced polysynthetic twiming, two sets of lamedle crossing one another being visible in most individuals. Movement on gliding planes is also pronomed, the structure being identical with that proxhced by the artificial deformation of Carrara marble at $300^{\circ} \mathrm{C}$ or $400^{\circ} \mathrm{C}$. Photographed between crossed Nieols. $\times 70$ diameters.

PLATE 23.

Fig. I. On the left the iron tube enclosing the marble of Experiment A is shown ready to be placed in the machine. On the right the same, atter the marble had loen slowly deformed during a period of 64 days. $13 / 14$ of

Fig. 2. The deformed marble of Experiment A freed from the enclosing iron tube, and leside it a marble column of the dimensions which it originally possessed. $14 / 13$ of natural size.
Fig. 3. Tuhe eontaining the deformed marble, milled open, and the marble split in two as described. The marble colmmn in this case was reduced to one-half its original height in 4 hours. Natural size.
Fig. 4. Another experiment similar to that shown in fig. 3 ; the deformation, however, is less marked. The experiment in this ease occupied 17 days. The cones were quite distinct in the original. 10/11 of natural size.
Fig. 5. Column of marble (Experinent K) deformed at 300° C. The experiment occupied 124 days. Beside it is a column of the original dimensions. Natural size (very nearly).
Fig. 6. In this case the pressure on the marble was continued so long and the deformation earried so far that the moving marble within tore the irou tube apart, as shown. This tube when opened is shown in fig. 3 .

PLATE 24.

Fir. 1. Microphotograph of the Carrara marble used in the experiments. The rock as found in nature. The individual grains have very nearly the same diameter in every direction, althongh differing somewhat in size among themselves. Twiming is seen only in two or three grains, and in these is represented by a few broad lamelle. Photographed in ordinary light. $\times 50$ diameters.
Fig. 2. A microphotograph of the Carrara marble after having been slowly deformed during 12.4 days at a temperature of $300^{\circ} \mathrm{C}$. The individual grains can lre seen to lo distinctly flattened in a horizontal direction, giving a certain foliation to the rock, and to possess the fibrons appearance referred to in the text as due to polysynthetic twimning. Photographed between cernssel Nicols in polarised light. $\times 50$ diameters.
Fig. 3. Microphotograph of the Carrara marble deformed at $400^{\circ} \mathrm{C}$. A uifirm mosaic of somewhat flattened grains, free from all fracturing or cataclastic action. Photographed in ordinary light. $\times 70$ diameters.
Fig. 4. Mierophotograph of a few grains of the caleite on the thimest edge of a section of the deformed marble shown in fig. 2. The polysynthetic twiming is well scen. Two sets of twin lamelle cross one another in the large grain, curving somewhat, and varying more or less in width from place to phace. Photographed between crossed Nicols in polarised light. $\times 150$ diameters.
iron tube, and ally possesser. de split in two o one-half its
tion, however, days. The e experiment dimensions,
long and the tore the iron 3.
iments. Thee Hy the same 1 size among d in these is dinary light.
wly deformed grains can le ing a certain red to in the ween crossed

A unifirm or cataclastic
st edge of a tic twinning e large grain, ace to place. 0 diameters.

PLATE 25.

Fig. I. Mierophongraph of a thin section of the Carratio manhle shown in Plate 24 , fig. 1) deformed at the ordinary temperateme in 7 hours. The dark areas are the sramulated purtions of the mok. Lracgularly shaped fiagments of ealcite individuals, often distinctly twimed, are seen scattered through it. Phategraphed in ordinary light. $\times 70$ dimeters.
Fig. :2. Nierophotngraph of a thin section of the sime manble between the lines of gramulated material. It presents a continums mesaic of flattemed grains. Photogranhed in ordinary light. \times oud dameters.
Fig. 3. Microphotugraph of : thin section of the Laturentian marble from Lat 12 , Range V, of the township of Burleigh, Ontario. Presents a cataclastic structure identical with that shown by the defmem mande of tig. 1 of this Plate, but an a larger scale. The miginal rock was much more coarscly erystalline, and the grambition has mot been sominute. The twisting and twiming of the lange remmants in proess of granulation is well seen. Photugrarphed hetween crossed Nienls in potarised light. $\times 47$ diameters.
Fig. 4. Microphotugraph of a thin section of the Lanrentian marble firm Lot 38 , hiange VIII, of the township, of Anstruther, Ontanio. The roek is identical in character with that shown in fig. 3 , hat the section represents a more thoroughly gramulated purtion. The structure is identical with that seen in the artificially defimed marble of fig. 1 , but the grambation is not quite so minute. Photographed letween crossed Nienls in promised light $\times 70$ diancters.

Adams and Nicolson．
Phil．Fioms．．．I ioul．195．I＇ule 22

ドゅ． 1.

Fig．$\quad .$.

Hig． 3.

ris. 1.

Fig. :

Fig. :3.

riz. 1.

Fis.

Pis. is.

Fis. 1.

Fig. \because.

Fig. 4.

Fig. 1.

Fig. .

Fin: :

[^0]: roL. CXCV.-A 272.

[^1]: * 'Repont of the Texs of Metals and other Materials for Industrial l'urposes made at Watertown Arsenal, Mats., during 1s9.,' Witshinghon, Government Printing Ollice, 1895. Also subsequent Report of same serics for inom.

 \ddagger "Zum Mechanismus dev' Gehirgslilhhugen," 'Zeit. d. dentseh. Geol. Gesell.,' 1s80. See also Baltzer, (Der Gliarnisch,' p. 52 .
 8 "On the Vertieal Position and Convolutions of Certain Stra. "Trans. Roy. Sive. Elin.,' vol. 7, 1815.
 || 'Etules Synthéticuncs de Géologie Expérimentale,' Paris, 1879.
 - 'Ursachen der Jeformationen marl der Gebirgsbildung,' Leipzig, 1892.
 ** "Experimental Rescarches in Molutain Building," 'Trams, Roy. Soc. Edin,'' vol. 35, 1888.
 $\dagger \dagger$ "The Formation of Mountains," 'Nature,' Decemher 5, 1878.
 $\ddagger \ddagger$ "Versuche üher dhs Ausfluss plistischen Thones," 'Sitz. der Wiener Akad. Math.-Natur, Class,' 58 , 1:68.
 "Über Sanderuck und Bewegungs-Erscheinungen im Inneren trocl men Sandes," 'Inaugural I) issertation fler Eherhartl-Carls-Universitit in 'Tübingen.' Aachen, 1883.

 IIII ' Thirteenth Annual Report U.S. Geological Survey.'

[^2]: fracture induced in it by the pressume. The deavage fices shomed their usmal lustre,

 * 'Athenemn,' 1853, p. 1165: "Jeprort of the 23ad Meeting of the British Association for the Advancement of Science."
 \dagger "Experiments on the Contortion of Mountain Limestone," '(ienlagisal Magazine,' Norember, 1869 ; and at sulsequent parer in the 'Popular Seience Review,'

 S 'Theoretische (ieologie,' p. 444.
 || "Das Verhaten der Schichtgesteine in gebegenem Lagen"
 Hiss.'; Math. Ply. Classe, 1880 , 4, 596-623.

[^3]:

 + 'Der Mechanismus der Gebirgsbildung,' pp. 16-19.
 \ddagger "Die Pracipien der mechanischen Tuchnologie mad die Eextigkeitstehre", "Zeit. des Vereines Deutscher Ingeniene,' BJ. 36, p. 019 (1809).

[^4]:

 + 'Das Gesetz der proportionaten W'iderstande', p. 76.
 \pm 'Theoretische (ieologie,' p. 141.

[^5]: VoL. cxcr.-A.

[^6]: * "Ueber nene Strnetnrfliachen an den Krystallen der gediegenen Metalle," 'Nachrieht. der k. Gesell. der Wissen. zu Göttingen'; Math.-phys. Klasse. 1899. Heft I.
 \dagger "Experiments in Mierometallurgy: Effects of Strain (Preliminary Notice)," 'Roy. Soc. Proc.,' vol. 65 ; ". The Crystalline Strueture of Metals," Bakeriau Lecture, "Roy. Soc. Proc.,' vol. 65.

[^7]: * ". Der Mammer in Dezug anf seine (ieologie, Strictur und seine mechanischen Bigenschaften," "\%eil. für prakt. (ieol.,' Jan, und Fel., 1898.
 \dagger 'Lelurbuch der l'etrographie,' Bat :3, p. 417.

[^8]: * 'Geologie von Attika; ein Deitrag zur Lehre vom Metamorphismus der Gesteine,' p. 186.

